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Microscopic theory of conduction electron scattering 
from a random metal surface with mildly sloping 
asperities 

A A Krokhin, N M Makarov and V A Yampol’skii 
Institute for Radiophysics and Electronics, Academy of Sciences of the Ukranian’ SSR, 
Kharkov 310085, USSR 

Received 12 December 1990 

Abstract. A new integral boundary condition for the conduction electron distribution 
function, which describes electron scattering from a statistically rough surface at arbitrary 
values of the Rayleigh parameter, is derived and analysed. The average slope of asperities 
is assumed to be small. The method of passing to the limit of Born and Kirchhoff approxi- 
mations is demonstrated. It is proved that electron reflection from a mildly sloping surface 
asperity is always nearly specular. An exception is the case of a narrow range of small 
incidence angles with respect to lhe boundary. for which the diffusivityof electron scattering 
maybecausedbytheshadowingeffect Asanexample,the roleofelectroMurtacescattering 
for the normal, anomalous and infrared skin elfect is analysed from a unified standpoint. 
For the anomalous skin effect, the change in the kind of surface scattering of the electrons 
with small incidence angles is shown to lead to non-monotonic frequency and temperature 
dependences of the metal impedance already in the leading approximation in the anomality 
parameter. I n  contrast to the known earlier microscopic boundary conditions, the new 
condition enables one to analyse a series of kinetic effects in which the electrons participate 
with large incidence angles with respect to the sample boundary. 

1. Introduction 

In investigating kinetic properties of bounded metal samples, the problem of the 
description of conduction electron scattering by surface defects is known to arise. The 
solution of the problem within the framework of quasiclassical theory is reduced to the 
formulation of a boundary condition for the electron distribution function. 

The simplest form of such a boundary condition has been suggested by Fuchs 111. In 
Fuchs’ model, surface properties are characterized by the single phenomenological 
parameter p,  having the meaning of electron specular reflection probability. This model 
adequately describes the limitingcases ofdiffuse ( p  = 0) andspecular (p = 1) reflection. 
For the remaining cases, one should make allowance for both the dependence of p 
on the electron momentum and the possibility of electron scattering in non-specular 
directions. According to this, the boundary condition is transformed into an integral 
relation with respect to momenta. The scattering probability is determined by a scat- 
tering indicatrix dependent on the electron momenta before and after the interaction 
with the boundary, as well as on parameters of surface defects. 
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Two approaches can be singled out in the theory of surface scattering of quasi- 
particles. The first one refers to the case of the scattering indicatrix employed whose 
explicit form is either not specified (see e.g. [2-41) or chosen from model arguments 
[5,6J. However, such an approach does not solve the question of metal kinetic coef- 
ficients as a function of boundary microscopic parameters; therefore it is phenom- 
enological itself. 

The second approach is developed on the basis of quantum scattering theory. It 
allows one to determine the dependences of conductivity, impedance and other kinetic 
coefficients on boundary parameters, electromagnetic wave frequency, temperature, 
intensities of external fields, etc. Various examples of the microscopic boundary con- 
ditions can be found elsewhere [7-121. 

The most widespread surface defects are asperities. The electron scattering indicatrix 
for a rough surface was calculated earlier in two limiting cases, viz. the Born approxi- 
mation, k,[ -=3 1 IS], and the Kirchhoff approximation, k,c P 1191. The limitsof validity 
of the former or latter limiting cases are determined by the Rayleigh parameter k,<, the 
product of root-mean-square asperity height [ and normal (with respect to the average 
metal surface) component of the electron wavevector k, (the x axis is directed inside the 
metal). 

In typical metals with well treatedsurfaces, [and theelectronde Broglie wavelength 
k;'  are, as a rule, of the same order ( k F -  loe cm-' being a conduction electron 
wavevector on the Fermi surface). Therefore the Born approximation kxc e 1 can be 
justified only for electrons with small incidence angles cp with respect to the sample 
boundary. Such electrons determine a whole series of well known effects in metal 
physics, e.g. direct-current size effects in thin metal samples, anomalous skin effect, 
Azbel'-Kaner cyclotron resonance, radiofrequency sizeeffects andquantum oscillations 
of impedance in weak magnetic fields. Originally the theory of above-listed phenomena 
was constructed in the Fuchs' model [l, 13-19]. Further theoretical development is 
related to the use of the Bom approximation [ l l ,  12.20-221. 

However, there is a rather wide variety of electromagnetic phenomena caused by 
electrons with arbitrary angles cp - 1 of electron impact with the boundary. One can 
attribute to them the skin effect in the infrared frequency range, static skin effect, 
doppleron oscillations of impedance, transverse electron focusing in a magnetic field, 
etc. The influence of surface-electron scattering on these effects has so far been studied 
theoretically only in the framework of the phenomenological approach [4,6,23-251. 
There was no microscopic theory because in this case the Rayleigh parameter is of the 
order of unity (k,c - l), and neither the Born nor Kirchhoff approximation is valid. 
Meanwhile. the microscopic analysis of the phenomena in the intermediate region 
k,"[ - 1 turns out to be of importance not only itself, but also from the application 
viewpoint. Thus, for instance, in experiments [26] the possibility of investigation of 
phase transitions in 2~ systems of hydrogen and deuterium on a tungsten surface using 
a static skin effect was demonstrated. 

The formulationof the microscopic theory of surface scattering at arbitrary Rayleigh 
parameter values was held back by the absence of an adequate theory of wave diffraction 
by a rough boundary. Recently such a theory, asymptotically exact with respect to the 
parameter 

. / /cp - k , t / k x L  Q 1 (1) 
was suggested in a series of papers by Voronovich 127,281 ( L  being the mean length of 
the asperities). It should be stressed that inequality (1) can hold only for surfaces with 



Theory of electron scattering from metal surfcce 4623 

mildly sloping asperities ( y  = c/L Q 1). This is the case for the possibility, realized in 
[28], ofconstructingan asymptoticseries for the surface scattering amplitude in powers of 
the parameter (1) independent of wavelength. Actually, mildly sloping surface asperities 
( y  Q 1) can be regarded as a strongly anisotropic bulk scatterer. The characteristic range 
of action of such a potential is of the order t i n  one direction and L in another. Precisely 
because of the strong anisotropy of the potential, one managed to solve the quantum- 
mechanical scattering problem for an arbitrary value of Rayleigh parameter. 

In the present paper, on ?he basis of the method developed earlier [28], the collision 
integral of electrons with a rough metal surface was calculated in the quadratic approxi- 
mation in parameter (1). Note that both Born and Kirchhoff approximations naturally 
imply multiparameter expansions including, besides the limitation on the Rajleigh 
parameter, an independent requirement of small obliquity of asperities ( y  G 1). The 
collision integral derived in this paper is a one-parameter expansion in y / 9 .  The inves- 
tigation [29] of metal surfaces with a scanning tunnelling microscope has demonstrated 
that the slope of boundary asperities y in the samples being utilized in current experi- 
ments is actually small ( y  = 10-2-10-4). Therefore there is good reason to believe that 
the derivedcollision integral describes the interaction of electrons with the metal surface 
with sufficient accuracy. 

Sofar there has been the widespreadopinion that the behaviour ofelectron reflection 
from a rough metal surface is first determined by the Rayleigh parameter. It was believed 
that, if k,[ 3 1, i.e. the incidence angle p' - 1, then the reflection is diffuse. If kxC G 1, 
i.e. p' + 0, then the reflection is nearly specular. Perhaps, one of the most significant 
results of the present paper is the refutation of such a viewpoint. An analysis of the 
obtained surface collision integral allows us to infer that for an arbitrary value of the 
Rayleigh parameter the electron reflectionis nearlyspecular, provided that the condition 
(1) holds. This condition suggests that the incidence angle p' is large enough ( y  = t / L  Q 
p' - kx/kF s 1). Thus for surfaces with y G 1 the region of very small incidence angles 
remains unexplored; in this region the condition (1) becomes invalid (p' < y Q 1). 
Assuming that reflection is diffuse in this region, the diffusivity is caused by the 
shadowing effect, well known in diffraction theory [30] but, unfortunately, studied 
incompletely. 

In the last sectionof this paperwe have considered askin-effect problem and analysed 
the conclusions to which the above assumptions lead. Apparently, the shadowing effect 
may turn out to be essential only under the anomalous skin-effect conditions when 
electrons with a small incidence angle play the main role. The metal impedance for the 
anomalous skin-effect conditions is well known to be independent of temperature. The 
assumption of a diffuse scattering probability in the small incidence angle domain 
leads to the conclusion of the existence of the flat temperature dependence of surface 
impedance already within the leading approximation in the anomality parameter. 

2. Boundary condition Cor the electron distribution function 

The distribution function of electrons in a bounded sample is determined from a Boltz- 
mann kinetic equation. Its general solution contains an integration constant, to find 
which one needs to formulate a boundary condition on the metal-vacuum interface. 

Let us consider a metal half-space bounded by a rough surface x = c(r), c(r) being 
a random function of ZD position vector r = b, z}. The average surface coincides with 
coordinate plane x = 0, the x axis being directed into the metal, 
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To calculate metal macroscopic characteristics (e.g. conductivity, impedance, etc) 
one needs to use the distribution function averaged over surface random asperities. 
Therefore the boundary condition is formulated at the metal averaged surface, x = 0. 
Such a boundary condition manifests the relation betwen the averaged distribution 
functionsoftheelectronsflyingawayfromf(k,, k )  andimpingingonf(- kx, k), themetal 
surface. In general, the relation betweenf( - k,, k) and f(k, ,  k )  can be written as a linear 
integral relationship 

Since the scattering by static defects is elastic, the energy conservation law 

k: + k' = ki2 + k'? k$ (3) 
holds. 

For simplicity, here and below the dispersion law for electrons is assumed to be 
quadratic and isotropic, k = {k,, k J  being a 2D wavevector. The equality (3) determines 
the dependence of normal component k, on k = Ikl, and of k: on k' = Ik'l (k,(k) > 0 
and k:(k ' )  >O). 

Apparently, the integral kernel Q(k.  k') = Q(k' ,  k )  is a probability density of a 
transition from the state k' to k as the electron hits the surface. Since for the equilibrium 
distribution function the boundary condition (2) should be an identity, the probability 
density satisfies an ordinary normalization condition 

Q(k.  k')  = 1 
d 2k' I,.,,, 0' (4) 

The condition (4) implies the absence of particle flux through the surface x = 0. 
Therefore. usually, instead of the kernel Q(k ,  k') ,  one introduces the kernel V(k,  k')  
according to the formula 

(5 )  
d 2q Q ( k ,  k') = 8(k  - k') (1 - I - V(k,  4)) + V(k,  k ' ) .  

9 c * F  ( 2 - 4 2  

Substituting expression (5 )  into formula (2), we come to the following canonical 
form of the boundary condition 

This form of the boundary condition representation is more convenient for analysis 
and applications for two reasons. First, equality (6) implies that the particle flux con- 
servation law holds without any additional requirement like the normalization condition 
(4). Secondly, in the right-hand part (6) 'specular' (first) and 'diffuse' (second) terms 
areexplicitlysingledout .Thediffuse termiswrittenasadifference betweenthe incoming 
and outgoing terms, i.e. they represent an integral of electronsurface collisions. 

To compute the kernel Q ( k ,  k')  (and the kernel V(k,  k')  related by equation ( 5 ) ) ,  
the problem should be solved of electron wavepacket scattering by a statistically rough 
surface x = g(r). The solution of this problem would lead to establishing the relation 
betweenthe kernel Q and the amplitudeSofplane-wave scattering froma rough surface. 
We do not wish to touch upon the mathematical details, as it is rather obvious that the 
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transition probability manifests itself through the second-order moment of S. The exact 
formula is of the form 

(S& q)S*(k. 4 ' ) )  = (2n)-2Q(k q)Wq - 9 ' ) .  (7) 

Angular brackets heredenote averagingover the ensemble of realizationsof the random 
quantity E(r) and the star symbol represents complex conjugation. The delta-function 
in the right-hand part of equation (7) is a consequence of statistical homogeneity of the 
metal surface. 

Thus the problem of surface-electron scattering is reduced to finding the scattering 
amplitude Sand calculating the correlator (7). A general mathematical theory of the S- 
matrix has been derived by Voronovich [27-281. In [28] the scattering amplitude has 
been computed in the quadratic approximation in y / q ,  viz. 

+ k,(k - k ' )  - k, - 4.1) 

Here 

k,(k 2 k') = [k$ - ( k  f k')2]''2 

E(k) = 

qs = k,(q) = ( k ;  - q2)"' 

d 2 r  E(.) exp( -i k. r). 
-r 

Let us regard the random function $(r) ensemble as Gaussian. Construct a bilinear 
form (7) of scattering amplitudes (8) and perform averaging. As a result, we get the 
expression for Q, which, as can immediately be checked, satisfies the normalization 
condition (4). Omitting intermediate calculations, we present here the ultimate 
expression for the kernel of surface collision integral: 

HereJ,(x) is a first-order Bessel function, W(r) is a binary correlation function of asperity 
heights determined according to the formula 

and the prime on W ( r )  in equation (9) denotes a derivative with respect to r .  The 
correlation function has a maximum at r = 0. The characteristic scale of W ( r )  decrease 
coincides with a mean roughness length L .  

The boundary condition (6)  with kernel (9) holds for an arbitrary value of the 
Rayleigh parameter k,<. Its region of validity is limited only by the inequality (1). 
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3. Analysis of the boundary condition 

Let us investigate the obtained boundary condition (2) and (9) versus the Rayleigh 
parameter k,c and find out how it changes into the known boundary conditions [8,9]. 

A A Krokhin et a1 

Within the Born approximation, as 

k , c < l  (11) 

the exponent in the integrand (9) can be set to unity. As a result, the kernel V(k ,  k ' )  
takes the form [SI 

V(k.  k ' )  = 4 ~ * k , k ~  W(lk - k ' l ) .  (14 
'Here 

W(k)= J~~ d'rW(r)exp(- ik . r )  
-9. 

is a Fourier image of the correlation function W(r). Obviously, W(0) - L 2 ,  L-' being a 
characteristic scale of W(k) decrease. 

Within the Kirchhoff approximation. as 

k , 5 %  1 (14) 

themaincontribution to the integral (9)isgiven by the vicinityofpoint r = 0, soit should 
be calculated by the Laplace method. In so doing, the difference 1 - W(r) is replaced 
by rzJW"(0))/2, andW'(r) = - r(%'"(O)(. Performing the integration, we obtain 

-) (15) 
8arkk,k: lk-k' I2 

V (k ,  k ' )  = ~2(kx+k:)4~74mc(0)(exp (-2~z(kx+k:)2(7V"(0)1 ' 

In the boundary condition (6) the function V(k, k') (15) is sharper than the distribution 
functionfl- k:, k'), It suggests that the collision integral in equation (6) can be written 
in the Fokker-Planck approximation, expanding it  in powers of small momentum 
transfer. k - k'. Thus the boundary condition (6) takes the differential form 

f(k,, k )  =f( - k,, k) +Zg2/41'"(0)((kfVz -2kV)f( - k,, k) .  (16) 

Here V and V2 are a two-dimensional gradient and Laplacian. respectively, in k-space. 
The relationship (16) for the limiting case (,14) has first been obtained in 191. 

Generally speaking, the behaviour of electron-surface scattering is determined not 
by the Rayleigh parameter k,c but by the relation between the angular width @ of the 
scattering indicatrk (9) and the angle q - k,/kF of the electron impact with the metal 
boundary. In the boundary condition (6) these quantities respectively determine thc 
variance scale of the integral kernel V(k,  k') and distribution function f( -k : ,  k ' ) ,  

A detailed analysis of equation (9) as a function of wavevector k' for constant k 
demonstrates that the characteristic angular range, within which the probability V(k ,  k ' )  
is essentially non-zero (i.e. an angular width of scattering indicatrix), is determined by 
the following interpolation formula: 

(17) @ = (1 + k,C)/U + kJ). 
This formula holds at arbitrary values of k,c and k,L obeying the inequality (1). 
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Consider first the case of flat electron impingement on the metal surface, when 

Y e V e @ .  (18) 

The distribution function f(- k : ,  k ' )  under integration (6) turns out to be sharper than 
the kernel V(k ,  k') .  Therefore the effective region of integration in the incoming term 
in equation (6) is significantly less than in the outgoing one, hence 'income' can be 
neglected. Thus the case of flat impingement (18) is equivalent to the r approximation 
in bulk scattering theory, and the boundary condition (6) degenerates into the algebraic 
Fuchscondition [l] with a specularity parameterp depending on the electron momentum 
and parameters of the rough boundary: 

p =  1 - 

Since the inequalities (18) can hold only as k,l; 
in expression (19) is determined by the Born approximation formula (12). 

1, the transition probability V(k,  k') 

In the opposite limiting case of steep impingement 

Y < @ Q p l  (20) 

the indicatrix V(k,  k ' )  is sharper. Therefore the difference of the distribution functions 
can be expanded in powers of small wavevector transfer, k - k'. It suggests that if the 
impingement is steep (20), the collision integral in equation (6) could be calculated 
within the Fokker-Planck approximation. Naturally, for the kernel V(k,  k') the general 
formula (9) should be used, not the asymptote (15), which is valid only in the Kirchhoff 
approximation. 

After this procedure, we obtain the differential boundary condition that coincides 
precisely with the equality (16). Such coincidence confirms the above statement that for 
electron scattering from a rough surface the physically different situations differ not. in 
the Rayleigh parameter k,(, but by the relationship between the typical incidence angle 
q - k,/k, and the scattering indicatrix width (17). 

The property of major significance for the boundary condition (6) with integral 
kernel (9) is that throughout its region of validity (1) it corresponds to nearly specular 
reflectionfrom aroughmetalsurface. Actually, it iseasy tosee that for all theconsidered 
cases the 'diffuse' (integral) term in equation (6) appears to be small compared to 
f ( - k , ,  k ) .  For instance, as the impingement of electrons is steep (20). the second 
term in equation (6) indicative of the degree of diffusivity is proportional to the small 
parameter (y/q)'of the theory. It should be noted, in this respect, that smallness of the 
integral term in equation (6) as compared to f (  - kr, k )  does not imply the possibility of 
its allowance through the step-by-step approximation method. It is caused by the fact 
that the probability of surface electron scattering should be compared not with unity but 
with the probability of bulk scattering, which enters into the kinetic equation and can 
also be small. 

From the above, the non-obvious statement follows that the possibility of diffuse 
reflection of electrons can appear only in the region of extremely small incidence angles, 
where the condition (1) fails. Here (at q < y e l), owing to the shadowing effect (see 
[30]), the large-angle scattering probability increases; it may lead to diffusivity. 
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The shadowing effect value is determined not only by the parameter y/q, but also 
by the relation between root-mean-square asperity height 6 and the size of the Fresnel 
Zone (L/kF)’/’. If 

tZkF/L Q 1 (21) 

then electrons with angles q C y ‘go round’ the asperities and get into the geometrical 
shadow region[19]. In thiscasetheirscatteringfromthesurfaceisdescribed bytheBarn 
approximation; hence it is nearly specular. 

Thus the conditions 

i;/L Q 1 i ;?kF/L e 1 (22) 
provide almost specular reflection of electrons with any incidence angles q, For the 
possibility of diffuse reflection to arise, rather large obliquity of asperities is needed, 

C / L 3  1 (23) 

k x / k F  < i;/L 4 1 L/c2  kF Q 1 (24) 

or the inequalities 

must hold simultaneously. 
In connection with the above, one should mention the experiments by Tsoi [31], as 

well as by van Kempen et a1 [29] on transverse electron focusing in a magnetic field. In 
[31] they have observed nearly specular reflection of electrons incident on bismuth at 
angles ‘p = x/2. As was established in experiments [29], reflection of the electrons from 
the (001) plane in silver is much closer to specular than from the (011) plane. An 
investigation carried out therein for the structure of silver planes by means of a scanning 
tunnelling microscope has revealed that the mean slope of asperities C/L on the (011) 
plane is essentially larger than at (001). The listed experimental facts can be naturally 
explained in terms of the suggested theory. 

4. A skin effect in metals with rough surfaces 

Let us demonstrate an application of the boundary condition (6) and (9) to the simple 
and well investigated example of a skin effect in metals. Earlier allowance for surface- 
electron scattering in skin-effect theory was made in the Born approximation (11) and 
the Kirchhaff approximation (14) (see the review in [ll]). An attempt to go beyond 
these approximations was made in 151, wherein the boundary condition was written in 
the general form (2). However, the transition probability Q(k,  k ’ )  was determined 
phenomenologically, without referring to the microscopic approach. The boundary 
condition (6) and (9) suggested in this paper enables one to obtain microscopically 
foundedresultsfor the metalimpedancein the wholedomainof frequenciesfar different 
kinds of skin effect: normal, anomalous and infrared. Without dwelling on the details 
of standard computations, we present the ultimate expressions far the impedance. 

4.1. Weak spatial dispersion 

I L / ~ l *  1 

I ,  = uF/(v -iw) 8 = (c/wp)(l +iv/w)”Z. (26) 
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Here 1, is an effective free path length of electrons; 6 is the complex depth of the skin 
layer; uF, v and wp are the Fermi velocity, frequency of bulk collisions and plasma 
frequency of the conduction electron gas; o is an electromagnetic wave frequency; and 
cis the velocity of light. 

The metal impedance in the leading approximation is determined by the complex 
frequency v - iw, and the impact of surface scattering manifests itself in small cor- 
rections to the parameter (25): 

2 = - (4nio6/c2)[1 + &(l - p)l,/S]. (27) 
In the formula (27) the effective diffusivity coefficient is proportional to the scattering 
transport cross section 

d2kdZk‘  
(k2  - k . k’)V(k, k’) .  

In the limiting cases of large-scale and small-scale asperities, formula (28) is simplified 
to the following asymptotes: 

1 - p = 252IW‘(O)j k p L % l  (2% 
1 - p = 32C2k; W(0)/15.~ k F L  Q 1. (30) 

In the low-frequency region (w  Q v), i.e. for the normal skin effect, the correction 
in equation (27) related to surface scattering plays no essential role since it only slightly 
changes the imaginary part of the impedance. As for the region of high frequencies 
referring to infrared metal optics, 

U, wir Q 0 Q wp Wir = OP(UF/C) (31) 
the metal impedance in the leading approximation is purely imaginary. It means that 
there is no electromagnetic wave energy dissipation. For this reason the strict allowance 
for the surface electron relaxation is of great importance, since it, together with bulk 
relaxation, determines the absorption capacity 

C 2v 30, 
JT wp 4c 

A = - R e Z = - + - ( 1  -p) .  

For weak spatial dispersion (25) the main contribution to conductance is due to 
electrons with incidence angles about q - 1. The condition (1) for the validity of the 
suggested theory i s  satisfied directly for such electrons. Consequently, their reflection 
from the metal surface throughout the whole domain (25) is almost specular. 

4.2. Strong spatial dispersion 

p/1, I Q 1. (33) 
For strong spatialdispersion (i.e. an anomalousskin effect), the impedance Zissensitive 
to the kind of surface eIectron scattering already in the leading approximation in par- 
ameter (33). In [14] the dependence of impedance has been calculated versus the 
phenomenological specularity parameter p. Let us write the expansion of function Z(p) 
for the nearly specular reflection (1 - p Q 1): 

~ ( p )  = 9 nV3(wd/c2)[1 + $z(1-p)]exp(-xi/3) (34) 

d = (4c2uF/3nww;)”3. (35) 



4630 A A Krokhin et al 

The diffuse additional term to the impedance can also be calculated through the 
microscopic boundary condition (6) and (9), and the diffusivity effective coefficient for 
the anomalous skin effect can thus be determined. After standard but cumbersome 
computations we get 

Formula (36) is convenient for numerical calculations within a wide frequency domain 
corrcsponding to the anomalous skin effect 

w, = . 3 i w 3  4 (37) 
Analytical expressions for (1 - p )  can be derived in limiting cases of Bar and steep 

impingement. Turning from one case to another is made by varying the frequency 0,  

since it  affects the incidence angle of effective electrons /6/l,l, and hence the ratio I&, 

If the condition of steep impingement holds (20). then the integral over k' in formula 
(36) is calculated in the Fokker-Planck approximation. and the formula 

follows for the diffusivity coefficient, where w ( x )  = L-2U'(x/L.) is a dimensionless cor- 
relation coefficient decreasing at the distance Ax - 1, 

As can be seen from equation (38). the diffusivity effective coefficient is proportional in 
this case to the small parameter (1) squared. Note that the formulae (29) and (38) were 
obtained earlier (see the review in [ I l l ) .  

For Rat impingement (18) the last term in equation (36) can be omitted. It is 
equivalent to neglecting the incoming term of the collision integral (6). As a resull, the 
diffusivity coefficient takes the form 

Under the conditions of anomalous skin effect (33), electrons with small incidence 
angles, p - Ic3/[J, are effective. If the condition (1) holds for them, then the scattering 
from the metal surface i s  nearly specular and the above-listed formulae for 1 - p are 
valid. lf the inequality (l)fails(seecondition (24)). then,owing to the shadowingeffect, 
one can expect a sharp increase in the probability of diffuse scattering. In the region 
relevant to theconditions(24) thereisnoquantitative theory yet. However, aqualitative 
analysis of impedance behaviour is possible here. 

The incidcnce angle p changes as the wave frequency w or temperature T(i.e. the 
relaxation frequency) changes. If, as a result of this change of cp, the inequality (1) 
transforms into the inequality (24), then for one sample both specular and diffuse 
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scattering of electrons can be realized. Inasmuch as the impedance Z for diffuse scat- 
tering is 9/8 times larger than for specular, then in the temperature domain cor- 
responding to the transition a smooth temperature dependence arises. Meanwhile, the 
impedance frequency dependence becomes non-monotonic. Note that the dependence 
Z ( T )  manifests itself already in the leading approximation in the anomality parameter 
a/&,, not in the temperature corrections [32,33] studied earlier. 

In order to determine the frequency range corresponding to the shadowing effect 
and possible diffuse scattering of electrons, let us take into account that the incidence 
angle p? - IS/l,,,l has a minimum q = pmis at w - U. If qmin > c/L, then the reflection is 
nearly specular throughout the whole frequency range (37), so the non-monotonic 
frequency or temperature dependence does not emerge. The last inequality implies that 

Wi,(C/L)3" < U < w,,. (40) 
For a typical metal with wir - 10" SKI and v - lov SKI, condition (40) holds provided 
that i / L  < 10-'.Thisisratherarigorousrequirement to thequalityofsurfacetreatment. 
If it does not hold, then the frequency range emerges in which the impact of the 
shadowing effect is noticeable. Actually, if the left-hand inequality (40) is replaced by 
the inverse one, i.e. at 

v < W i , ( 5 / L ) 3 f 2  < a,, 

@"(L/C)3 < 0 < w.(C/L)3 '2  

(41) 
in the frequency domain 

(42) 
then the condition (1) fails. Owing to the shadowing effect, the probability of diffuse 
electron scattering is increased here. Thus, for instance, if c/L - lo-*. v - IO'S-' and 
wir - l O I 3  s-', then in the Frequency w domain of IO' to 10" SKI the reflection could be 
diffuse though throughout the rest of the frequency domain of w, to air the reflection 
could be nearly specular. 

To observe the change from specular reflection to diffuse reflection, it would be more 
convenient to study the temperature, rather than frequency, dependence. In the region 
of sufficiently low temperatures, when the condition (41) holds, the reflection is diffuse. 
Asthe temperature increases, the relaxation frequency v and incidence angle q increase. 
In the temperature domain where v = U* - U J , ( C / L ) ~ ' ~  the kind of electron scattering 
changes from diffuse to specular, with the impedance decreasing by a factor of 9/8 .  As 
the temperatureincreases further, the leadingapproximation impedance will not change 
until the condition (37) of anomalous skin effect fails. Sequentially, in the region of 
normal skin effect the quantity Z(T) starts to increase. The indicated monotonicity in 
the dependence Z ( T )  should exist at any wave frequency w less than wir. However, 
the most convenient for observations is a frequency o = U*. At this frequency the 
temperature range in which the scattering changes from diffuse to specular is most 
narrow. 
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